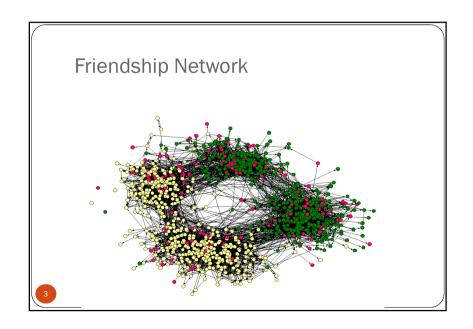
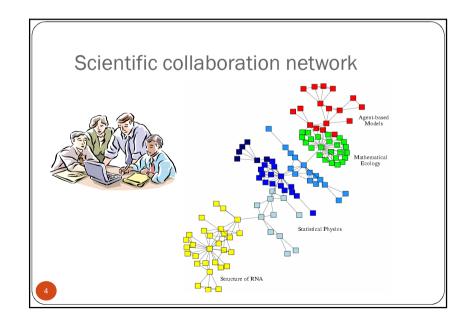


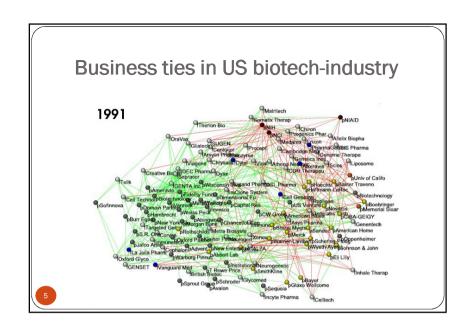
What makes a problem graph-like?

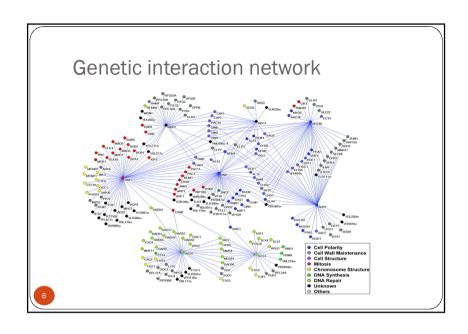
- There are two components to a graph
 - Nodes and edges
- In graph-like problems, these components have natural correspondences to problem elements
 - Entities are nodes and interactions between entities are edges
- Most complex systems are graph-like

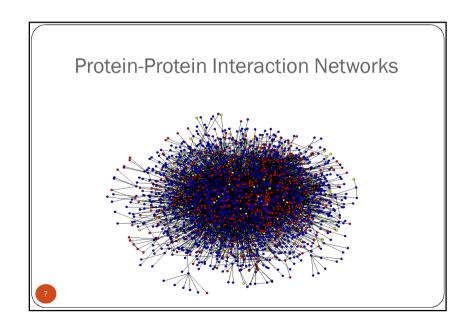
2

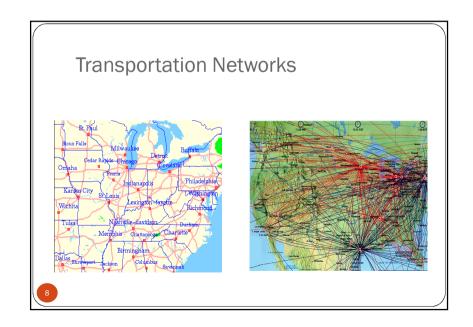


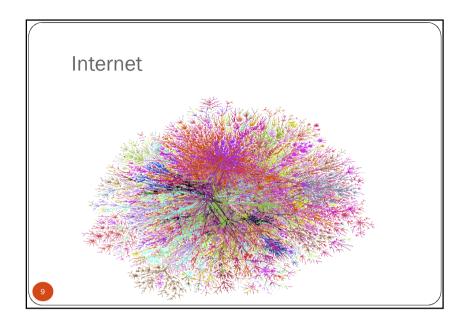


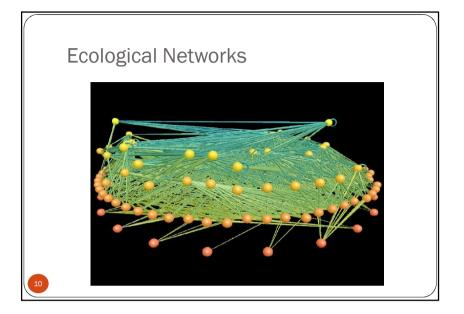












Structures and structural metrics

- Graph structures are used to isolate interesting or important sections of a graph
- Structural metrics provide a measurement of a structural property of a graph
 - Global metrics refer to a whole graph
 - Local metrics refer to a single node in a graph

11

Graph structures

- Identify interesting sections of a graph
 - Interesting because they form a significant domain-specific structure, or because they significantly contribute to graph properties
- A subset of the nodes and edges in a graph that possess certain characteristics, or relate to each other in particular ways

12

Connectivity & Component

- A graph is *connected* if
- you can get from any node to any other by following a sequence of edges OR
- any two nodes are connected by a path.
- A directed graph is *strongly connected* if there is a directed path from any node to any other node.

• Every disconnected graph can be split up into a number of connected *components*.

13

Degree: Simple Facts

• If G is a graph with m edges, then

$$\sum \deg(v) = 2m = 2 \mid E \mid$$

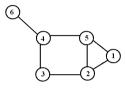
• If *G* is a digraph then

$$\sum \operatorname{indeg}(v) = \sum \operatorname{outdeg}(v) = |E|$$

• Number of Odd degree Nodes is even

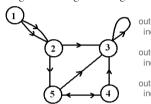
Degree

- Undirected Graph
 - Number of edges incident on a node



The degree of 5 is 3

- Directed Graph
 - In-degree: Number of edges entering
 - Out-degree: Number of edges leaving
- Degree = indeg + outdeg



outdeg(1)=2 indeg(1)=0

outdeg(2)=2 indeg(2)=2

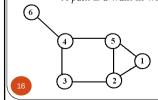
outdeg(3)=1 indeg(3)=4

Walks, Cycle & Path

 A walk of length k in a graph is a succession of k (not necessarily different) edges of the form

 $uv,vw,wx,\ldots,yz.$

- This walk is denote by uvwx...xz, and is referred to as a walk between u and z.
- A walk is *closed* is u=z → Closed Walks
- · A cycle is a closed walk in which all the edges are different
- A path is a walk in which all the edges and all the nodes are different.



Walks, Cycle and Paths

1,2,5,2,3,4 1,2,5,2,3,2,1 1,2,3,4,6 walk of length 5 CW of length 6 path of length 4

1,2,5,1 2,3,4,5,2 3-cycle 4-cycle

Special Types of Graphs

- Empty Graph / Edgeless graph
 - No edge

- Null graph
 - No nodes
 - Obviously no edge

Special Graphs

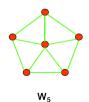
•Definition: The complete graph on n vertices, denoted by K_n, is the simple graph that contains exactly one edge between each pair of distinct vertices.

Special Graphs

 \dots , v_n and edges $\{v_1, v_2\}$, $\{v_2, v_3\}$, \dots , $\{v_{n-1}, v_n\}$, $\{v_n, v_1\}$.

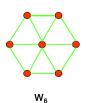
 W_3

Special Graphs



•Definition: We obtain the wheel W_n when we add an

additional vertex to the cycle C_n , for $n \ge 3$, and connect this new vertex to each of the n vertices in C_n by adding new edges.



•**Definition:** The cycle C_n , $n \ge 3$, consists of n vertices v_1, v_2 ,

Special Graphs •Definition: The **n-cube**, denoted by Q_n , is the graph that has vertices representing the 2ⁿ bit strings of length n. Two vertices are adjacent if and only if the bit strings that they represent differ in exactly one bit position. 110 111 100 **1**01 010 011 00 Q, Q_3

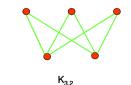
Special Graphs •Example I: Is C₃ bipartite? No, because there is no way to partition the vertices into two sets so that there are no edges with both endpoints in the same set. •Example II: Is C₆ bipartite? Yes, because we can display C₆ like this:

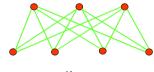
Special Graphs

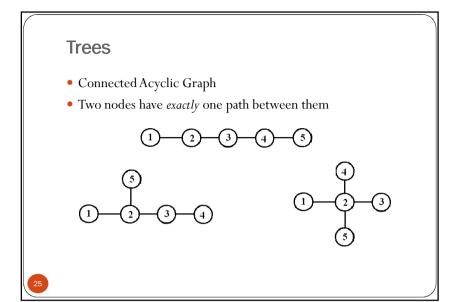
- •Definition: A simple graph is called **bipartite** if its vertex set V can be partitioned into two disjoint nonempty sets V₁ and V_2 , such that every edge in the graph connects a vertex in V_1 with a vertex in V₂ (so that no edge in G connects either two vertices in V_1 or two vertices in V_2).
- •For example, consider a graph that represents each person in a village by a vertex and each marriage by an edge.
- •This graph is **bipartite**, because each edge connects a vertex in the **subset of males** with a vertex in the **subset of** females (if we think of traditional marriages).

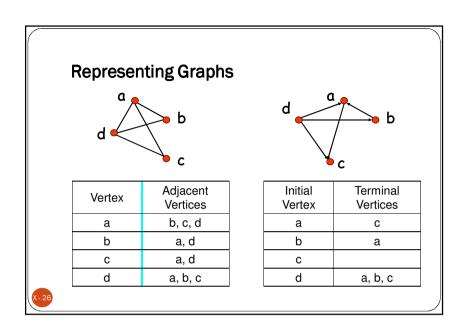
Special Graphs

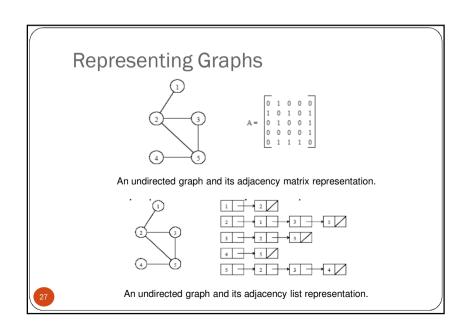
• Definition: The complete bipartite graph $K_{m,n}$ is the graph that has its vertex set partitioned into two subsets of m and n vertices, respectively. Two vertices are connected if and only if they are in different subsets.

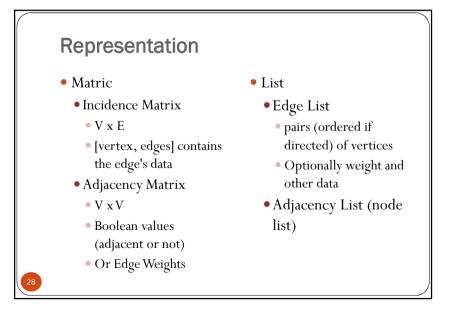












Representation (Matrix)

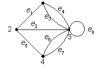
• Incidence Matrix au

1, jika simpul i bersisian dengan sisi j 0, jika simpul i tidak bersisian dengan sisi j

2 1 1 1 0 0 4 0 0 0 0 1

4 0 1 2 0

- Adjacency Matrix a_{ii}
 - 0, jika simpul i dan j tidak bertetangga 1 2 3 4 1 [0 1 2 0] 2 1 0 1 1

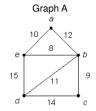


Degree

• Untuk graf tak-berarah,

$$d(v_i) = \sum_{j=1}^n a_{ij}$$

- Untuk graf berarah,
 - $d_{in}(v_j)$ = jumlah nilai pada kolom $j = \sum_{i=1}^{n} a_{ij}$
 - $d_{out}(v_i) = \text{jumlah nilai pada baris } i = \sum_{i=1}^{n} a_{ij}$



Matrix Graph A Degree Graph A ???

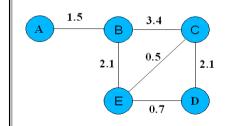
Topological Distance

- A shortest path is the minimum path connecting two nodes.
- The number of edges in the <u>shortest path</u> connecting p and q is the **topological distance** between these two nodes, d_{p,q}
- Distance Matrix
 - $|V| \times |V|$ matrix D = (d_{ii}) such that d_{ii} is the topological distance between i and j.

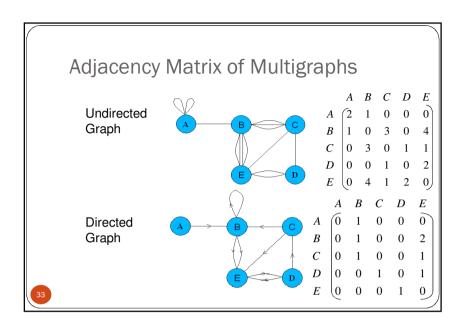


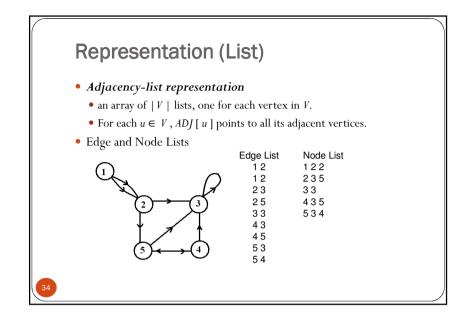
1 2 3 4 5 6

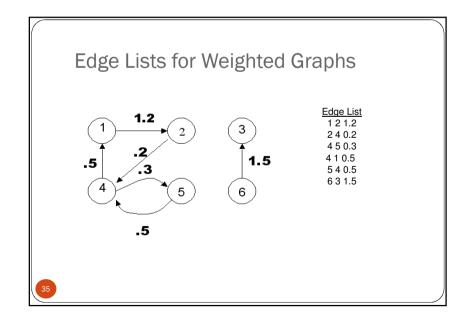
Adjacency Matrix of Weighted graphs

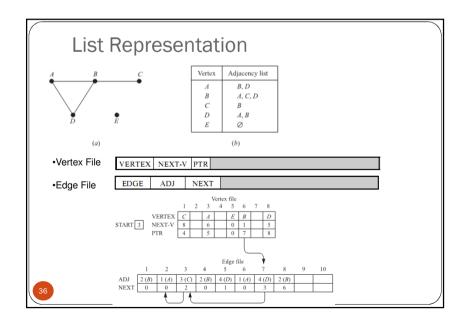


0 3.4 0 2.1 0.5 0 2.1 0.5 0.7









Operations on Graphs

- •**Definition:** A **subgraph** of a graph G = (V, E) is a graph H = (W, F) where $W \subseteq V$ and $F \subseteq E$.
- •Note: Of course, H is a valid graph, so we cannot remove any endpoints of remaining edges when creating H.

•Example:

subgraph of K₅

Isomorphism of Graphs

- **•Definition:** The simple graphs $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ are **isomorphic** if there is a bijection (an one-to-one and onto function) f from V_1 to V_2 with the property that a and b are adjacent in G_1 if and only if f(a) and f(b) are adjacent in G_2 , for all a and b in V_1 .
- •Such a function f is called an **isomorphism**.
- •In other words, G_1 and G_2 are isomorphic if their vertices can be ordered in such a way that the adjacency matrices M_{G_1} and M_{G_2} are identical.
- •From a visual standpoint, G_1 and G_2 are isomorphic if they can be arranged in such a way that their **displays are identical** (of course without changing adjacency).
- Unfortunately, for two simple graphs, each with n vertices, there are n!
 possible isomorphisms that we have to check in order to show that these
 graphs are isomorphic.

• However, showing that two graphs are **not** isomorphic can be easy.

Operations on Graphs

- •**Definition**: The **union** of two simple graphs $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ is the simple graph with vertex set $V_1 \cup V_2$ and edge set $E_1 \cup E_2$.
- The union of G_1 and G_2 is denoted by $G_1 \cup G_2$.

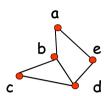
38

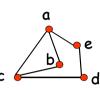
Isomorphism of Graphs

- •For this purpose we can check **invariants**, that is, properties that two isomorphic simple graphs must both have.
- \bullet For example, they must have
- the same number of vertices,
- the same number of edges, and
- the same degrees of vertices.
- •Note that two graphs that **differ** in any of these invariants are not isomorphic, but two graphs that **match** in all of them are not necessarily isomorphic.

Isomorphism of Graphs

• **Example I:** Are the following two graphs isomorphic?



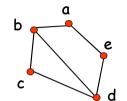


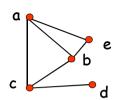
•Solution: Yes, they are isomorphic, because they can be arranged to look identical. You can see this if in the right graph you move vertex b to the left of the edge $\{a,c\}$. Then the isomorphism f from the left to the right graph is: f(a) = e, f(b) = a,

f(c) = b, f(d) = c, f(e) = d.

Isomorphism of Graphs

•Example II: How about these two graphs?





■ **Solution:** No, they are not isomorphic, because they differ in the degrees of their vertices. Vertex d in right graph is of degree one, but there is no such vertex in the left graph.

42

Isomorphism of Graphs

• Example III: How about these two graphs?

■ Solution: Yes.

 $\operatorname{Coz} A_{G1} = A_{G2}$

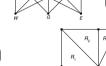
 G_2 $b \ c \ d \ e$

Isomorphism of Graphs

•Example IV: How about these graphs?

Graf Planar (Planar Graph) & Graf Bidang (Plane Graph)

- Graf Planar (Planar Graph): Graf yang dapat digambarkan pada bidang datar dengan sisi-sisi tidak saling memotong
- Graf bidang (plane graph): Graf planar yang digambarkan dengan sisi-sisi yang tidak saling berpotongan
- Manakah Grapf-graf berikut ini yang termasuk graf planar dan/atau graf bidang?



Referensi

- Ernesto Estrada, "Introduction to Network Theory: Basic Concepts", Institute of Complex Systems at Strathclyde Department of Mathematics, Department of Physics, 2010
- Dr. Djamel Bouchaffra, "CSE 504 Discrete Structures & Foundations of Computer Science, Ch. 8 (part 1): Graphs"
- Y. Peng, "Graph", University of Maryland
- Rinaldi Munir, "Materi Kuliah Matematika Diskrit", Informatika-ITB, Bandung, 2003
- Rinaldi Munir, "Matematika Diskrit", Informatika, Bandung, 2001

